all you ever wanted to

 know about grain size and never dared to ask (...)a film by Renée Heilbronner

motivation: the quartz piezometer

grain size as function of flow stress

experimental basis

Stipp \& Tullis

(Stipp \& Tullis, JGR, 2003)

coaxial

Heilbronner \& Tullis

(Heilbronner \& Tullis, JGR, 2006)

Figure 1. Geometry of experimentally sheared Black Hills quartzite samples. (a) Jacketed sample after general shear deformation: BHQ sheared between 45° precut Brazil quartz pistons (total undeformed length $\approx 15 \mathrm{~mm}$, diameter $=6.3 \mathrm{~mm}$), which are able to slide horizontally relative to the upper and lower ZrO_{2} pistons. (b) Thin section of sheared BHQ sample and Brazil quartz pistons under circularly polarized light. Horizontal cracks in the pistons result from unloading.
shear

stress determination

$\Delta \sigma$ versus $\mathrm{e}(\%)$

T versus γ

grain size determination

b) $1000^{\circ} \mathrm{C}, \sim 2 \times 10^{-6} \mathrm{~s}^{-1}, \varepsilon=22 \%$
(Stipp \& Tullis, JGR, 2003)

what is the 'mean' grain size?

RMS of h(dcircles)

The recrystallized grain size piezometer for quartz
Michael Stipp and Jan Tullis
Department of Geological Sciences, Brown University, Providence, Rhode Island, USA
"Recrystallized grains were distinguished from porphyroclasts manually and on the basis of the bimodal grain size distribution which occurs in all samples except W-1066 and W-1126. The diameter of each recrystallized grain is defined as the diameter of a circle with the same area, and the average 2-dimensional recrystallized grain size for each sample was calculated as the root mean square diameter from all measured recrystallized grains in that sample"

what is the 'mean' grain size ?

The effect of static annealing on microstructures and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear RENÉE HEILBRONNER ${ }^{1}$ \& JAN TULLIS ${ }^{2}$

mode of vol\%($\mathrm{R}_{\text {spheres }}$)

(need 2D-3D conversion)
${ }^{1}$ Department of Earth Sciences, Basel University, Bernoullistrasse 32, CH-4056 Basel, Switzerland
(e-mail: Renee.Heilbronner@unibas.ch)
${ }^{2}$ Department of Geological Sciences, Brown University, Providence RI 02912, USA

;. Grain sive dissributions of axially deformed samples, betiore annealing (left celumn) and after annealing

 theds. Note the maxinum radiuss included is 40 um. corresponding to the largess remaining porphyroctas ws indicate mode of rectrysallibicd errain sive.
deformed

equivalent 3-D radius ($\mu \mathrm{m}$)
annealed

equivalent 3 -D radius ($\mu \mathrm{m}$)
6. Giraias size distributions of samples defermed by shearing. before anncealing (left collumn) and afier ealing (right column). plotted as volume \% wersus radius of equivalent sphere. 2 D grain boundary maps ples). For explanation see Figure s. Arrows indicate mode of reerystalalizeci grain size

... which reminds me

for segmentation, for 2D-3D conversion,
... and many other useful techniques...
see: Heilbronner \& Barrett, Springer (20|4)

copies still available at reduced rate at Margrete's office

why go back ?

re-measure CIP grain size using EBSD: (see if CIP measurements are OK, especially fine-grained)
think about grain size
and then:
I. check Stipp \& Tullis piezometer using EBSD
2. check if piezometer is indeed different for different regimes
3. check if piezometer is same for coaxial and shear
4. check if piezometer is texture dependent

EBSD

convert to CIP

$\longrightarrow>$
 wl029

segmentation

finding the right mean...

$$
\begin{array}{ll}
\text { arithmetic mean } & \bar{X}=1 / n \cdot \sum x_{i} \\
\text { root-mean-square } & \text { RMS }=\sqrt{ }\left(1 / n \cdot \sum x_{i}^{2}\right) \approx \text { area average } \\
& \text { Mode }=\text { most frequent value }
\end{array}
$$

	symm.	+ skew	- skew
Mean	5.00	4.33	5.67
Mode	5.00	4.00	6.00
RMS	5.39	4.75	5.99
Skewness	0.00	0.53	-0.53
RMS / $\overline{\mathbf{X}}$	$\mathbf{1 0 8 \%}$	$\mathbf{1 1 0 \%}$	$\mathbf{1 0 6 \%}$

$$
\text { RMS }>\bar{X}
$$

finding the right mode:
for noisy data, use empirical relationship:
difference (Mean - Mode) $=3 \cdot$ difference (Mean - Median)

Mean of grouped data

Mode of grouped data (not noisy)

IV Mode

For frequency distribution, it is the value of the variable corresponding to the maximum frequency.
For example consider the frequency distribution as :

| $x:$ | 20 | 25 | 30 | 35 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f:$ | 17 | 19 | 27 | 20 | 5 |

Here the maximum frequency is 27 and the corresponding value of the variable is 30 . So mode is 30 .

For grouped data with class,

$$
\begin{equation*}
\text { Mode }=L+\frac{h\left(f_{1}-f_{0}\right)}{2 f_{1}-f_{0}-f_{2}} \tag{vii}
\end{equation*}
$$

where $L=$ lower limit of the class containing the mode
$h=$ width of the modal class
$f_{1}=$ frequency of the model class
$f_{0}=$ frequency of the preceding of the modal class
$f_{2}=$ frequency of the succeeding of the modal class
In some situation, $2 f_{1}-f_{0}-f_{2}=0$, in such a case, the value of the mode can be taken as

$$
\text { Mode }=L+\frac{h\left(f_{1}-f_{0}\right)}{\left|f_{1}-f_{0}\right|+\left|f_{1}-f_{2}\right|}
$$

Mean - Median - Mode (modal value)

Empirical relationship:
Difference between the Mean and Median is
~I/3 of the difference between the Mean and Mode
Mode $=$ Mean -3 [Mean - Median]
Mode $=3$ Median - 2 Mean

Use this relation for noisy data

st.dev. and RMS of grouped data

IV. Standard deviation (s.d.)

For grouped data, if $x_{i}=$ class mark, $N=\Sigma f_{i}$ then

$$
\text { s.d. }=\sigma=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{N}} \text { or, } \sqrt{\frac{\sum f_{i} x_{i}^{2}}{N}-(\bar{x})^{2}}
$$

For the ungrouped data, $x_{1}, x_{2}, \ldots \ldots ., x_{n}$,

$$
\text { s.d. }=\sigma=\sqrt{\frac{\sum x_{i}{ }^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}}
$$

The square of the s.d. is known as variance. Both are independent of change of origin.
V. Root mean square deviation (rms)

$$
\mathrm{rms}=\sqrt{\frac{\sum f_{i}\left(x_{i}-A\right)^{2}}{N}} \text { for grouped data. }
$$

where A is any arbitrary number. But rms is least when $A=\bar{x}$.

Textbook Of Engineering Mathematics Debashis Dutta

use 3D mode(s) (= my mission on earth...)

CQ87 regime 3 coaxial

$$
\begin{aligned}
\text { mean } r_{\text {equ }} & =10.5 p x \\
\text { RMS } & =12.4 p x \\
\text { RMS/mean } & =118 \% \\
& \\
\text { mean } r_{\text {equ }} & =7.6 p x \\
\text { RMS } & =9.5 p x \\
\text { RMS/mean } & =125 \% \\
& \\
\text { mean } r_{\text {equ }} & =5.7 p x \\
\text { RMS } & =6.7 p x \\
\text { RMS/mean } & =118 \% \\
& \\
\text { mean } r_{\text {equ }} & =4.5 p x \\
\text { RMS } & =5.2 p x \\
\text { RMS/mean } & =117 \%
\end{aligned}
$$

grain size mapping

2D to 3D

finding the right modes ... and plot!

are grains of the Y domain larger ?

(Figure 10a), the recrystallized grain size of the rhomb domain is approximately $12 \mu \mathrm{~m}$ and that of the prism domain is approximately $19 \mu \mathrm{~m}$, corresponding to shear stresses of 93 and 64 MPa , respectively. The gradual

Figure 13. Optical micrographs (using circular polarization) illustrating the difference in recrystallized grain size between the prism, the rhomb, and other domains. Details of amples with low and high volume percent recrystallization are shown. (a) W920 with $\gamma \sim 1.5$. (b) Prism domain of W935 with $\gamma \sim 6$. Grains of the prism domain appear black; rains of the rhomb domain are gray and grains of the basal (arrow in Figure 13a) compared to grains of other orientations.

texture domain

finding the cutoff

using density of w935.MISrI_052_I69-thI 5 which is misor about Ymax
histogram shows 2 maxes Y max at ~ 22 GV choose cutoff at 40 GV - by looking at histo median $=46.46 \mathrm{I}$ GV

finding the modes

compile the data

file	bdwidth	mean	median	mode	
1024	3	11.2799	10.9417	9.9697	
1025	3	14.3326	14.2531	13.2929	
1029	3	9.8560	8.9081	7.4949	
1050-m5	3	7.9871	6.6192	5.4242	
1051-m5	3	7.2336	5.6598	4.3131	
108I-m4	3	10.5499	8.8464	6.2525	
(same)	2	10.5499	8.4985	5.8990	
108I-m5	3	7.8843	6.5423	4.7071	
1126-m2	3	11.2210	II.404 I	11.8788	(truncated to 0-15)
1143-m2	3	15.9396	16.0590	16.1919	
w935	1.5	9.5255	8.8836	7.4747	
w946	1.5	6.7962	4.9580	3.7222	
w1092	1.5	5.9887	3.7802	2.8333	
w935 Y max	1.5	10.5231	9.8970	8.3990	
w935 antiY max	1.5	8.6637	8.0686	6.6667	

was it worth it?

I. check Stipp \& Tullis piezometer using EBSD measured same $h(d)$ - modes of $v(D) \approx 2 \cdot R M S(d)$
2. check if piezometer is indeed different for different regimes cannot say yet - not enough data re-done for regime I for shear: maybe all the same
3. check if piezometer is same for coaxial and shear no the same
4. check if piezometer is texture dependent yes it is !
:-)

part 2

DRT 2015 Aachen

2. olivine - pyroxene (= work in progress)

motivation:
torsion experiments to find flow law for mantle material
first finds:
dislocation creep and diffusion creep
aim of microstructure analysis:
step I: find grain size(s) of olivine and pyroxene
step 2: find shape(s)
step 3: find spatial relations
... think about results
... see forthcoming paper by Miki Tasaka

torsion experiments on Ol - Opx

Miki Tasaka
David Kohlstedt
Mark Zimmermann

Univ. Minnesota, Minneapolis
70:30 mixture olivine-orthopyroxene

Paterson apparatus
$\mathrm{T}=1200^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{c}}=300 \mathrm{MPa}$
$\dot{\gamma}=1.6 \cdot 10^{-4} \mathrm{~s}^{-1}$
$\gamma=1.9$

torsion experiments on Ol - Opx

\Rightarrow have to be careful with segmentation

torsion experiments on Ol - Opx

torsion experiments on Ol - Opx

segmentation grain boundary map grain map (segments)

2D and 3D grain size distributions

grain size mapping

orientation mapping

shape factor mapping

SFI $=P_{\text {measured }} / P_{\text {equivalent }}=$ large if grain boundary lobate

$$
\begin{aligned}
& (0.00<S F I<\infty) \\
& (0.00<S F I<\infty)
\end{aligned}
$$

2 phases - 4 grain sizes !

preferred orientation ?

0° orientation 180°
\Rightarrow Ol and $\mathrm{Opx}=$ random orientation

intersecting 2 feature bitmaps

intersecting 3 feature bitmaps

feature space

take-home message(s)

- use image analysis (processing) to measure - not to illustrate
- use state-of-the-art image analysis to match state-of-the-art experimentation
- think twice before declaring "the mean grain size"
- use modes of 3D grains - they are most meaningful
- put the numbers back into the picture \rightarrow map \rightarrow visualize
- think of images as maps \rightarrow be quantitative \rightarrow scale and calibrate (you can observe a lot by watching) \rightarrow (you can understand a lot by measuring)
- think of microstructures as multidimensional \rightarrow plot data in feature space (= intersect images)
... and be happy if you do not get a simple answer

announcement

TS1 - Brittle Deformation and Fault-related Processes
${ }^{10}$ Programme Committee Login

Suggest a Session here

TS2 - Ductile Deformation, Metamorphism and Magmatism
-a Programme Committee Login

Suggest a Session here

Suggested Session

Advances in Microstructure and Texture Analysis Q [Suggest a new Title]
Conveners: Renee Heilbronner, Rüdiger Kilian [Suggest a Convener and Description Change]

